Jacob Chanyeol Choi
Dec 11, 2023
Linq, Law&Good, and Yonsei University have introduced Eval-RAG, a new technology that enhances the precision of AI-generated responses in legal contexts
Exciting news from NLLP 2023 (Natural Legal Language Processing 2023)! Linq, Law&Good, and Yonsei University have introduced Eval-RAG, a new technology that enhances the precision of AI-generated responses in legal contexts. This innovation promises to revolutionize how legal professionals interact with AI technologies.
Stay connected for more updates on how we're driving innovation in legal technology!
Link to Paper: https://aclanthology.org/2023.nllp-1.13/
Abstract
While large language models (LLMs) have demonstrated significant capabilities in text generation, their utilization in areas requiring domain-specific expertise, such as law, must be approached cautiously. This caution is warranted due to the inherent challenges associated with LLM-generated texts, including the potential presence of factual errors. Motivated by this issue, we propose Eval-RAG, a new evaluation method for LLM-generated texts. Unlike existing methods, Eval-RAG evaluates the validity of generated texts based on the related document that are collected by the retriever. In other words, Eval-RAG adopts the idea of retrieval augmented generation (RAG) for the purpose of evaluation. Our experimental results on Korean Legal Question-Answering (QA) tasks show that conventional LLM-based evaluation methods can be better aligned with Lawyers’ evaluations, by combining with Eval-RAG. In addition, our qualitative analysis show that Eval-RAG successfully finds the factual errors in LLM-generated texts, while existing evaluation methods cannot.